RF Inhomogeneity Correction Algorithm in Magnetic Resonance Imaging
نویسندگان
چکیده
MR images usually present grey level inhomogeneities which are a problem of significant importance. Eliminating these inhomogeneities is not an easy problem and has been studied and discussed in several previous publications. Most of those approaches are based on segmentation processes. The algorithm presented in this paper has the advantage that it does not involve any segmentation step. Instead, a interpolating polynomial model based on a Gabor transform was used to construct a filter that can be used in order to correct these inhomogeneities. The results obtained are really good and show that the grey-level inhomogeneities can be corrected without segmentation.
منابع مشابه
Quantitative T(1)(ρ) imaging using phase cycling for B0 and B1 field inhomogeneity compensation.
T(1)(ρ) imaging is useful in a number of clinical applications. T(1)(ρ) preparation methods, however, are sensitive to non-uniformities of the B0 magnetic field and the B1 RF field. These common system imperfections can result in image artifacts and quantification errors in T(1)(ρ) imaging. We report on a phase-cycling method which can eliminate B1 RF inhomogeneity effects in T(1)(ρ) imaging. T...
متن کاملSOM for intensity inhomogeneity correction in MRI
Given an appropriate imaging resolution, a common Magnetic Resonance Imaging (MRI) model assumes that object under study is composed of piecewise constant materials, so that MRI produces piecewise constant images. The intensity inhomogeneity (IIH) is modeled by a multiplicative inhomogeneity field. It is due to the spatial inhomogeneity in the excitatory Radio Frequency (RF) signal and other ef...
متن کاملRegularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging
Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging by Amanda K. Funai Chair: Jeffrey A. Fessler In designing pulses and algorithms for magnetic resonance imaging, several simplifications to the Bloch equation are used. However, as magnetic resonance (MR) imaging requires higher temporal resolution and faster pulses are used, ...
متن کاملIntensity inhomogeneity correction of magnetic resonance images using patches
This paper presents a patch-based non-parametric approach to the correction of intensity inhomogeneity from magnetic resonance (MR) images of the human brain. During image acquisition, the inhomogeneity present in the radio-frequency coil, is usually manifested on the reconstructed MR image as a smooth shading effect. This artifact can significantly deteriorate the performance of any kind of im...
متن کاملFIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) by
FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) Zhenghui Zhang, PhD University of Pittsburgh, 2006 This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially v...
متن کاملInherent insensitivity to RF inhomogeneity in FLASH imaging.
Radiofrequency (RF) field inhomogeneity is an unavoidable problem in MRI, and it becomes severe at high magnetic fields due to the dependence of B1 on the sample. It leads to nonuniformities in image intensity and contrast, causing difficulties in quantitative interpretation and image segmentation. In this work, it is observed that with the fast low-angle shot (FLASH) sequence, which is often u...
متن کامل